20=-16t^2+100t+70

Simple and best practice solution for 20=-16t^2+100t+70 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20=-16t^2+100t+70 equation:



20=-16t^2+100t+70
We move all terms to the left:
20-(-16t^2+100t+70)=0
We get rid of parentheses
16t^2-100t-70+20=0
We add all the numbers together, and all the variables
16t^2-100t-50=0
a = 16; b = -100; c = -50;
Δ = b2-4ac
Δ = -1002-4·16·(-50)
Δ = 13200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13200}=\sqrt{400*33}=\sqrt{400}*\sqrt{33}=20\sqrt{33}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20\sqrt{33}}{2*16}=\frac{100-20\sqrt{33}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20\sqrt{33}}{2*16}=\frac{100+20\sqrt{33}}{32} $

See similar equations:

| 138+3c=180 | | 5x-8=6-6x | | 0=-16t^2+100t+30 | | 100+4a=180 | | 108+12w=180 | | 10x-11=9x-12 | | 18=6(3x-15) | | 72+4p=180 | | x+x+88=90 | | 4-7x=34 | | (64/x)-6=2 | | 25y=350 | | 5x-8=8-6x | | 1/4(x-8)+1/2x=2x+3/4(x-24) | | g(30)=19.60(30)+1.74(30) | | x-(1/6x)=5 | | 6(x-2)+4=26 | | ((2.8+x)/3.1=2.709 | | 4+2x^2=-1660 | | 6x-13=67 | | 6(2x-4)=5(8-x) | | -2x+7=40 | | x+24=71 | | p2+0.5p+0.625=1 | | 14x-57=6x-241 | | 35+x+130=180 | | x+8/3=-8 | | 74x-13x=35 | | 11=p/3+3 | | (9e-8)=(8e+2) | | (9e-8)=(9e-8) | | -10=x/20-9 |

Equations solver categories